Apply
College of Engineering, Technology, and Architecture

BS in Electrical Engineering

At a Glance

The Electrical Engineering program covers a branch of engineering concerned with generating, distributing, processing, coding, transmitting, receiving, and deciphering electrical and electromagnetic signals.

Accelerated
Full Time
Rolling Admission

Degrees Offered

Total Credits

Bachelor of Science

127

Overview

The electrical engineering program covers a branch of engineering concerned with generating, distributing, processing, coding, transmitting, receiving, and deciphering electrical and electromagnetic signals.

Quick Links

Ready to take the next step?
Apply today.

Questions?
Contact Program Director Patricia Mellodge for more information.

Please access accreditation information here.

About the Major

bs-electrical-engineering

Electrical engineering involves the study and application of electricity and electronics. It consists of a wide range of fields including electronic circuits, digital computing, robotics, sensors and instrumentation, electrical power, telecommunications, photonics, control systems, wireless communications, signal processing, and integrated circuits. BSEE graduates may obtain a professional license as a professional engineer (PE).

About the Minor

The minor is designed to provide students matriculating in bachelor’s degree programs in other Colleges of the University, particularly the sciences and the other engineering majors, with an introduction to the discipline of electrical engineering.

 

Degree Requirements

For more information, and to see a complete list of degree requirements, visit the Course Catalog.

Core Classes

  • ECE 231 | Digital System Logic
  • ES 242 | Engineering by Design
  • ECE 361 | Electronics Fundamentals
  • ECE 420 | Random Signals and Noise
  • ECE 482 | Capstone Design I

Electives

In addition to the required professional electives, seniors must choose a sequence of courses in one of the following areas: VLSI, controls, communications and signal processing, electric power, computer systems, robotics, or system simulation. Both the required courses and the sequences are designed to achieve breadth and depth in the curriculum. The integrated design experience is obtained in a two semester senior capstone design project, which have increasingly are becoming industry sponsored.

The ability to work professionally on electrical systems, including the design and realization of such systems, is demonstrated by the progression of courses from introductory to comprehensive, including design components. It also includes some technical elective courses students may choose.

Through participation in the All-University Curriculum and in additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their knowledge base and to participate in the larger learning community of the University.

Dual-Degree Option with Audio Engineering Technology

CETA offers a five-year plan for students interested in completing two undergraduate degrees in audio engineering technology and electrical engineering. Interested students should contact their academic advisor of the program they are accepted into to discuss this option.

Career Outlook

bs-electrical-engineering

Our electrical engineering program is designed to prepare you for career success.

Electrical engineers work in a wide range of industries using skills that range from basic circuit theory to complex signals, systems, and project management. The tools and equipment consist of instrumentation such as a voltmeter, oscilloscope, spectrum analyzer, logic analyzer, waveform generator, and motor/generator assemblies to high-end test equipment and sophisticated design/manufacturing software applications.

Our graduates go on to work at companies like Bucher Emhart Glass, Eversource, General Dynamics Electric Boat, Goodrich Corp., Hamilton Sundstrand, Otis, Pratt & Whitney, Raytheon Technologies, and Sikorsky.

Accreditation

The electrical engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

During their careers, electrical engineering graduates will:

  • become successful practicing engineers or pursue another career that makes use of engineering principles and professional skills;
  • become contributing members of diverse multidisciplinary teams and successfully apply the fundamentals of their educational background; and
  • pursue professional development, including continuing or advanced education, relevant to their career path.

To achieve these objectives students are given a rigorous foundation in mathematics, physics, chemistry, mechanics, programming, digital systems, and circuit theory. They are then immersed in a sequence of required courses in microprocessors, electronics, electromagnetics, signals and systems, and design practice. In the senior year, Digital Signal Processing, Random Signals and Noise, and Design II (senior project) are required courses, In addition, students choose a sequence of courses in one of the following areas: communications and signal processing, computer systems, control systems, electric power, and microelectronics.

Students must complete a 4-credit lecture and laboratory course in general chemistry. Students also must complete two 4-credit lecture courses in calculus-based physics (including laboratory components), thus meeting the depth requirement.

Students also take M 242 Differential Equations (3 cr.), M 240 Calculus of Several Variables (4 cr.), and M 220 Linear Algebra (3 cr.). Students should have several electrical engineering courses that integrate mathematical skills and should have these courses as co- or prerequisites. Electrical engineering students also take a stand-alone probability and statistics course, ECE 420 Random Signals and Noise.

The ability to work professionally on electrical systems later, including the design and realization of such systems, is demonstrated by the progression of courses from introductory to comprehensive, including design components. It also includes some technical elective courses students may choose in each stem. These are not all offered at the same time, but there are selections from each stem available in each semester of the senior year. In addition, the final capstone sequence contains projects that usually involve material from each area.

Our senior capstone projects increasingly are becoming industry sponsored. Traditionally, instruction in the design of electrical systems is provided in a sequence of courses: VLSI in ECE 565 and ECE 567, controls in ECE 442 and ECE 543, communications in ECE 423, ECE 424, ECE 521, and ECE 540. Both the required courses and the sequences are designed to achieve breadth and depth in the curriculum. The integrated design experience is obtained in the senior capstone project (ECE 483 Design II).

Through participation in the All-University curriculum and in additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their knowledge base and to take part in the larger learning community of the University.

Extensive laboratory work supplements the theoretical course work through hands-on experience. In addition to the laboratories in the sciences, there are several required laboratory courses in engineering: Circuits I and II, Electronics I and II, Digital Logic, Microprocessors, and Digital Signal Processing. Students exercise their verbal and technical writing skills in a required writing course as well as in many engineering courses. Also, written and oral communication of laboratory results is required.

The engineering design experience is distributed throughout the entire curriculum. The design experience begins in the first year and continues throughout the curriculum, culminating with the senior capstone project.

The student learning outcomes of the electrical engineering program leading to BSEE degree are aligned with the student learning outcomes of ABET EAC (1 through 7), and prepare graduates of the program to attain the program educational objectives.

Student outcomes (1) through (7) are articulated as follows:

(1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

(2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors

(3) an ability to communicate effectively with a range of audiences

(4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

(5) an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

(6) an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

(7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Specific Criteria are as follows:

(PSC-1) Graduates have a knowledge of probability and statistics, including applications.

Academic Year First-Year Sophomore Junior Senior Total Graduates
20-21 19 29 20 26 20
19-20 26 22 16 31 22
18-19 18 22 19 33 23
17-18 11 18 19 24 22
16-17 19 17 19 28 17

Benjamin Chern

Electrical Engineering, 2025

Electrical Engineering student Benjamin Chern ’25, always had a passion for technology research and discovered that the extracurricular learning opportunity at UHart has been beneficial for helping him deepen his learning. Read more.

Since the student body is smaller, I am able to connect and study with most of the other electrical engineers in my class and work on assignments with them.

4+1 Program (BS + MEng degrees)

The program is designed to allow full-time engineering students to earn their Bachelor of Science (BS) and Master of Engineering (MEng) degrees in five years of study. Two graduate-level courses taken in the undergraduate program may be applied to both undergraduate and graduate degree requirements. Students usually commit to the program at the start of the second semester of their junior year, and juniors who are interested should contact their department chair.

In order to be accepted into the program, students must have a 3.0 cumulative grade point average at the end of the junior year (below 3.0 will be considered on a case-by-case basis).

Contact Laurie Granstrand to learn more.

Electrical and Computer Engineering Faculty

Akram Abu-aisheh
Professor; ECE Graduate Program Director
Electrical and Computer Engineering

View Full Profile
Hisham Alnajjar
Dean
Dean's Office for CETA

View Full Profile
Michael deAlmeida
Program Director, Audio Engineering
Electrical and Computer Engineering

View Full Profile
Krista M. Hill
Associate Professor
Electrical and Computer Engineering

View Full Profile
Dongbin Kim
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Qisi Liu
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Patricia Mellodge
Program Director, Electrical Engineering
Electrical and Computer Engineering

View Full Profile
Saeid Moslehpour
Chair; S. I. Ward Department of Electrical & Computer Engineering; Program Director, Computer Engineering
Electrical and Computer Engineering

View Full Profile
Carolyn Petersen
Adjunct Faculty
Electrical and Computer Engineering

View Full Profile
Johanna Raphael
Program Director, Electromechanical Engineering Technology
Electrical and Computer Engineering

View Full Profile
Brian Romano
Adjunct Faculty
Electrical and Computer Engineering

View Full Profile
Xin Shen
Program Director, Computer & Electronic Engineering Technology
Electrical and Computer Engineering

View Full Profile
Hemchandra Shertukde
Professor
Electrical and Computer Engineering

View Full Profile
David Shuman
Assistant Professor
Electrical and Computer Engineering

View Full Profile
Kiwon Sohn
Program Director, Robotics Engineering
Electrical and Computer Engineering

View Full Profile
Ying Yu
Associate Professor
Electrical and Computer Engineering

View Full Profile

Similar Programs

For Placement Only

Robotics Engineering - BS

Robotics Engineering combines electrical engineering, mechanical engineering, computer science, and many STEM fields to solve real-world problems and covers an area of engineering impacting nearly every aspect of our lives today.

For Placement Only

Computer and Electronic Engineering Technology

The computer and electronic engineering technology (CEET) program is a hands-on engineering technology program that focuses on analog and digital circuits, electronics, microprocessors, as well as fundamental computer systems and network systems.

Start Your UHart Journey Now